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' 'T;;del of optical and infrared wave propagation in scattering

,a! media is derived from Maxwell's equations. It allows for the calcula-
5 tion of the irradiance profiles of the forward- and the backward- ’ i3
‘n} propagating beams which result from the interaction of a coherent beam 74
i with a scattering medium. The method accounts for all orders of scat- o
"~ tering and is applicable to inhomogeneous media. The range of vslidity
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1.0 INTRODUCTION

~ g
A A A s &

A characteristic feature of modern warfare is the widespread use
of electro-optical systems designed to enhance the effectiveness of
various weapons. However, poor weather conditions and/or artificial
obscurants can severely degrade their performance. Hence, a require-
ment exists for understanding and predicting the propagation of elec-

tromagnetic waves under adverse conditions created mostly by the pres-

ol

ence of suspended natural or man-made aerosols.

Propagation in thin or teauous clouds is well understood and

documented (Refs. 1 and 2). It is governed by simple and exact single-

" -‘-{.‘.l “_ ',

- scattering equations which explain numerous atmospheric phenomena.
However, for military applications, there are many instances of low
" vigibility conditions where the single scattering hypothesis fails. 1In
such dense clouds, the optical rays undergo many scattering events
before escaping the medium, reaching a target, or being detected.
These multiple scatterings have nonnegligible and often dominant
effects on the propagated wave. Analytic methods (e.g. Refs. 3-5),
transport methods (e.g. Refs. 6-15), and Monte Carlo simulatfions (e.g.
Refs. 16-17) have all been used to study this problem. The mathematics
are complex and no general solution has been obtained yet. The numeri-
cal analysis based on the Monte Carlo method is time-consuming and
provides empirical relations only. Fortunately, there are special and
practical cases where simplifications are possible, which result in
useful approximate theories. The most accurate of these approaches was
developed at Defence Research Establishment Valcartier (DREV) (Refs.

&

11-15). It consists of the exact series solution of the small-angle

T Dl Sl i
L 'l .A".J _.l"‘

approximation to the radiative transfer equation. The model is very
convenient for numerical computations and gives valuable insight into

the relative effects of the various scattering orders. However, it is

.
'r'o%\r -

restricted to homogeneous media and it does not appear readily applica-
ble to the important inverse problem of interpreting lidar measurements

for the determination of the optical properties of the medium.
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A model based on a different theoretical approach 1is developed

N here. It stems from the Maxwell's equations of electromagnetic wave
A 3 propagation and not from the radiative transfer equation. The method
f'ié predicts the irradiance profiles of the forward- and backscattered

beams including the lidar configuration. All orders of scattering are

N;Q accounted for but they are not individually identified. The theoreti-
:ﬁ; cal basis is outlined in Chapter 2.0. Chapter 3.0 describes the sto-
,:&: chastic approach. The original features of the model are introduced

and discussed in Chapter 4.0, and Chapter 5.0 gives the resulting prop-
agation equations. Sample solutions for beam waves and plane waves are

K derived and analysed in Chapters 6.0 and 7.0 respectively.

.\,:‘..
:” This work was performed at DREV between January and December
?h;, 1983 under PCN 33B07, Atmospheric Propagation of Laser Beams.
RS,
:::::- 2.0 THEORETICAL BACKGROUND
Fos
:::i The object of this work is to describe the propagation of the
%fﬁj forward~ and backward-going electromagnetic waves in a particulate
G}Q medium. We restrict the analysis to situations where polarization
>5 effects are negligible. Under this approximation, the wave electric
%; ; field E can be considered scalar and, from Maxwell's equatiomns, it

>
2N satisfies the equation

\j:
e

o 2 [ ]

vz - 22 [(ue) E] o [1]

T a2 2
o
Yol
.5?} where V2 i{s the three-dimensional Laplacian operator, t is the time, u'
.;.E is the relative magnetic permeability, €' is the relative dielectric
1}i* constant of the medium, and ¢ 18 the speed of light in free space. The
ﬁ:ﬁ right-hand-side function S is the source-sink term arising from the

325 interaction of the forward- and backward-propagating waves through the

<

Aas particles in the medium. S is related to the current and charge densi-
Eﬁﬂ ties induced on or within the particles. However, it will not be
oy
<
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formulated in this exact fashion here; it will be modeled as described
later in Section 4.1l.

We consider only one temporal Fourier component of the electric
field. If w denotes the angular frequency of the wave, the temporal

Fourier transform of eq. 1 ylelds

vzs-ﬂ*'_;'-wzﬁ-g, 2]

[

where the tilde (~) denotes a Fourier transform. Equation 2 was sim-

tat
plified through the approximation w >> (p'e')~! ngts-l which is well
justified for optical and infrared waves. The product (p'e') is the

square of the complex refractive index n and it is written
e = n2, [3]
We seek a solution of the form
E=Aexp [tk(tz + ¢) ], [4]

where z 18 the coordinate along the main direction of propagation,

- /=1 2 o 2 2 o 2 2
i 1, k w (nro n, Y/¢4 is the wave number, n_, and n, are
respectively the real and imaginary parts of the reference refractive
index, and A and ¢ are functions to be specified below. On substitut-

ing eq. 4 for E in eq. 2, we obtain after separation

o

= tY . l%tIn [5]
v

~b
" th . L%t Il (6]

- -

TR

RIS ks ]

-
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= -1 02 o5 -lk(z+ey) :

5 v Ve WAt RA Y VoA - VAT e £/, [7] f
24.

he 2A

R b i 2 ~ =ik(z+¢, )

kN - — - - =
Ly ot Uy LA HEA L Y - v, - F e %), (8]

k\; where the subscripts f and b refer to the forward and the backward wave

}$i respectively, and where !fE g¢f and zbs x¢b. The functions U and W are :

defined as follows:

oo n2-n2-102 4$p2
o pa L _ro Mo [0}

h' .s -

fj\ "ro 4o
2D n_n

2 V- i, [10] i
5 n?2 -n? !
b ro 1o !
g,

- where n, and n, are the real and imaginary parts of the instantaneous

_E: and local complex refractive index of the particulate medium. :
-;;} Two types of separation were performed in obtaining eqs. 5-8;

.3. first, the separation into the forward and the backward waves which has

.3; its basis in the + and - signs in eq. 4, and second, the separation
’ﬁ? into an equation for the phase front angle V and the amplitude A. The

NN ~

4 latter separation is different from the more common practice of factor-
¢ . ing out the real and imaginary parts in eq. 2. The basis 1is to uncou-
;;g ple the equation of V (or ¢) from that of the complex amplitude A.
n‘_!.c
;-.:'
o Equations 5 and 6 are the eikonal equations, or the geometric

optics equations, of the forward and backward waves. The surfaces

. !
o (z+¢) = constants are the geometric phase fronts and the vector (V + k) i
{..,v ~ ~ i
,$i3 gives the direction of the optical rays, where k is the unit vector :
ﬁiﬁ along the z-axis. Hence, from eqs. 4, 7 and 8, it follows that A is f
..

*‘:
yon) ’
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the complex amplitude defined on the geometric phase front. This com-

plex amplitude embodies the phase perturbations induced by diffraction.

3.0 STOCHASTIC APPROACH

For the present analysis, we model the particulate medium as a
space—time random function of the complex index of refraction n. This
function can be specified from the given properties of the medium, i.e.
the number density of the particles, their shape, their size distribu-
tion, the distributed complex refractive index within the particles,
and the complex refractive index of the surrounding medium. Hence, the
quantities V and A are random functions and the governing eqs. 5-8 are

stochastic equations.

There is no known general method of solving for the random func-
tions V and A. In any case, this would yield much more information
than is required in practice. The quantities of interest are the aver-
ages and one possible approach consists in using the stochastic eqs.
5-8 to derive deterministic equations for these averages or statistical
moments. In the present application, we are interested in the moments
<A> and <AA*> which are respectively the average field amplitude and

the average irradiance.

The method of derivation is as follows. First, the functions U
and W representing the medium properties are written as sums of an
average and a random part, i.e.

U= <U>+u; <u>=0, [11]

W= ai>+w; w> =0, [12]

where the pointed brackets denote ensemble averaging. The same decom—

position is performed for the dependent wave front function

ﬁlm&‘e
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Veci>+y; w> =0 [13]
The field amplitude A is separated in a slightly different way into a
coherent (subscript c¢) and an incoherent (lower case letter) contribu-
tion

A=A +a; <a>=0. [14]

The component a 1s random and represents the scattered amplitude.
The component Ab is not fully deterministic. There are randomly
distributed holes in the profile of Ab left by the presence of the

scatterers.

If we substitute eqs. 12-14 for W, V and Af in eq. 7 and drop
the subscript f for brevity, we obtain

A

c oa
— — > . > . . -
oz + az+ <! !Ac+ <!a !‘+! !Ac+!. Z&

1 1 1
+2A v.<v>+5a!.<v>+5A

C ~ ~ ~

" z'+-% av. v

~

<

[J

+ k <W> Ac + k W>a+ kv Ac + kwa

5 V2A -5y Va=Se . [15]

The terms of the form V . VA are transport terms. They account for the
propagation of the amplitude A along the rays of direction (k+V). The
terns %-A V < V represent the compressibility of the amplitude. A
increases if the rays converge and decreases if they diverge. Accord-
ing to this general interpretation, we can set in eq. 15

y.VA =0, [16]

NSt~ TPV i YNNI [l "N Yl

- s

D - BT

e
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d which states that the coherent amplitude is not propagated by the inco-
e herent or scattered rays. Physically, this is explained by the fact
™ that Ac = 0 immediately past the particles so that it cannot be trans-
; ported by the scattered rays that originate from the particles. On the "
other hand, the term % Ac V < v 18 not zero instantaneously since it
P models the action of the scattering rays on the nonzero ccherent ampli-
tude that impinges on the particles. The term %Ac VY . v is responsi- ‘,f
~oo bt
A ble for the depletion of the coherent amplitude, i.e. its transforma- §7
[ o
K tion into scattered amplitude. It can be rewritten -
1 .1 1 E\
N 7Ac vevy 5<Ac> v 'L+-2-(Ac <Ac>)!-‘!.' [17] 3
" '
I. ‘;
N Taking the ensemble average of eq. 17, we have ;
. e
" 1 1 +
b FA V- V=F<A~A> Y. v [18] )
) 3
Py .
N W
M Whereas the function (Ac-<Ac>) is characterized by narrow negative 3"
spikes created by the shadows of the particles and does not depend at 2 i§
all on their refractive index, the random phase-front function V.v is E
i
g distributed more uniformly over the complete space and is a strong :1' ‘
: function of the refractive index of the particles. Therefore, i
(Ac-<Ac>) is, for all practical purposes, not correlated to V.v and it i
R follows from eq. 18 that b
2
> 74 L.y =0, [19] P
i 1
. and similarly that ey
&
? <Ac w> =0, [201 !
LIS
E Using eqs. 9-20 and applying them to both the forward and the ]
backward fields, noting that <A>-<Ac>, dropping the subscript c when .
L
nt' “
’: LB
i R
" Cl
1§ ke
3
BTy -’:’I&T'}" "C‘;-:»"J'f-'fjﬁ ot g Bl ot A Nt I Ag W v E AT A TR LN, - T Me 3% ]
3 " 'Y > % e L Ll ’ ‘q ", y NV, ¢ "JP ‘l’ " s ) & 0 ' X .,
; Crdsigth 5’?5;:20 M .,».e., el ‘!a(,ot‘?sf’n’; R S T R R S S o P T 0
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not necessary, and taking the ensemble average (term by term) of the
stochastic eqs. 5-8, we derive the following set of deterministic equa-

tions for the average wave front angles and wave amplitudes:

0wV, >

= t Y Lt L g vl [21]
O<V~b>

R AT R AR AL RS (22]

dA.>

=t Y LAt A L. IOtk > Ap

I S - -
2kv<A> k <wa

£ £l wpp ety

£

- —ik(z + ¢.) .
+ Gfe £ >, [23]

0<Ab>
- +%>.1qb>+§qb>!.w$+km>qb>

-1 g2 - -
Zkv«b” k<wab> v. <v‘ab>+} Qb!. %W
o "1k(-z+$.)
+ o Y, [24]

Subtracting eqs. 23 and 24 from eqs. 7 and 8 respectively, and using
eqs. 9-20, we arrive at the equations for the random amplitudes a and

lb,

da

£ 1 N S
az+<!f>.gaf+2fg.wf>+k<w>af Zkv af
1
- - {kwaf k<vaf>}-kwA¢f -fAcf'Z!f

1 g 8

e

r
4
'
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-{ v 1 Veve= V. <y a>+-1-<av ve>}
Ye - Lot 73 L X"l U TT e Y
+ {8, exp[-1k(z+9,)] - <8, exp[-1k(z+e,) >}, [25]
-ub+<v> v +l v <V.>+ k <W>a - V2 a
oz ~» AT L b~ 2K b
1
=< oy, - ko) - o s g A - LY,

1 1
-y, - La+ Zab!-'!b-z'<!bab>.+'§'<ab2'gob>}

+ {§'b exp[-1k(-z+¢ ) ] - <‘§.’b exp[-1k(-z+¢,) ]>}. [26]

Finally, the equations for the average forward- and backward-scattered
irradiance are readily obtained from eqs. 25-26 and 16-20. They are

d Qfag >
—— [ ] * L]
% + V> V<aal >+ <aal >V . <U>+ 2k W> <apal
- L *® - *
% L. [aflap - apyap]
2k Mfa£> k <vaf> <Af>* k <waf> <Af>
-1<A><a*v.v>-l<A>*<a Ve.v.,>
2 f~°~f 2 f £~"°
- * r'y -
V. <veaat> + <a¥ 5. exp[-1k(z+e,) ]
+ <a, 5% exp[+ik(z+e) ], [27]
) Qbag >
® L] ®
- + V>V <aat >+ <aar >y . <Y >+ 2k W o<aak >
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:ﬁ -1 v[*v > - <a v.,]
| T D I b <2 s
B
\3 2k <wa at> -k wa > A k wad> <A >
0y
EL” L o> <at v >-1 > v >
7 A W LR T TN LY

-
g -v. * * S ~1k(-
po: e >t o 5 ew[-tkl-rre)

+ <a, S% exp[+ik(-z+e,) ]>. [28]

ot

::w:' The system of deterministic eqs. 21-24 and 27-28 is mathemati-~

'__:f cally unclosed insofar as it contains more unknowns than equations,

A

s such as the moments <vfaf>, Qf!’!f>’ etc. This is the classic closure
problem always encountered in the treatment of statistical phenomena
x governed by nonlinear and/or quasi-linear stochastic equations, such as
v ('
20 eqs. 5-8. The complete mathematical model contains an infinite set of

e equations. Hence, workable models require closing this hierarchy of
' 3 equations at a practical order.
12
12

358 The set of eqs. 21-24 and 27-28 1is exact in the framework of

' unpolarized forward- and backward-propagating waves scattered by a
4 particulate medium, but it is indeterminate. The essence of the pro-
LRt

SR posed model will consist in deriving constitutive relations to relate

*&: the unknown statistical moments on the right-hand sides of eqs. 21-24
E"ﬂ and 27-28 to the lower order functions <A> and <aa®>,
h :.;‘_

.-'-\.
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4.0 MODEL

4.1 Source-Sink Terms

The first element of the model is the formulation of the source-
sink terms. These terms are responsible for the interchange of energy
between the forward- and the backward-propagating waves. This interac-
tion arises because of the backward reflection and scattering by the
individual particles of a fraction of the impinging radiation. Instead
of trying to solve this problem by rigourously applying the electromag-
netic boundary conditions at the interface of the particles and the
surrounding medfum, we model the backscattering source-sink terms in a
form mathematically similar to the forward scattering interaction as

expressed by the terms of the fotn-l AV.V of eq. 15. Hence, we write

2
§; = % elk(z+dy) A Y. (g =Y [29]
~ 1 ik(-z+ - -
sb =ze ( 0f) Af v. (vf - Y% ), [30]

where 3; and x; are the backscattered random geometric phase front

angles of the forward and backward wave respectively. They will be
determined by application of the reflection-refraction laws at the

interface of the particles.

The mechanism of separation into a forward and a backward compo-
nent modeled by eqs. 29 and 30 is somewhat arbitrary. The original
Maxwell's equations contain no such distinction. In effect, eqs. 29
and 30 amount to a special and simplified treatment of the boundary
conditions at the interface of the particles. Although heuristic, this
separation into forward- and backscattering is very convenient in prac-
tical applicatiqns.
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4.2 Hypotheses

The second most important element of the model is the derivation
of the constitutive relations for the higher order unknown moments.

The derivation is based on the following hypotheses:

Hypothesis 1. The random phase front angle v and amplitude a are

only weakly correlated. This approximation 1is consistent with the
governing eqs. 5-8, for they imply that v is independent of a and that
the random a is the result of repeated interactions with the phase
front angle v over the complete propagation path and not only at the
point of observation. What the hypothesis means, for instance, is
that

= ik

=
t
<wva> << <y v >} <aa*>;. [31] g:’:
o
5
Such a relation was experimentally verified in the random continuous
medium of turbulence (Ref. 18). In particulate wmedia, we have no such i
direct measurements but the hypothesis is self-consistent. For exam- ‘
Rt
ple, the result obtained for <va> satisfies the inequality [31] is 5
‘!’!’* << 1. From the equation for v, we find that the standard devia- i
tion of v, i.e. <!.!>l, 18 of the order of the fraction of volume ;é';‘
1
occupied by the particles to the power }. For naturally occurring é.s
serosols, this quantity rarely exceeds 10~5 which gives <v.v>l = 0.06. ') f
~ . v
Hence, the results derived from Hypothesis 1 are self-consistent under Jﬁ
most practical conditions. Ry
&
s
Hypothesis 2. The cross correlations between quantities per-
taining to the forward and backward waves are negligible, e.g. '
i
<!-b . !f> = Qb a£*> = 0, [32] :c\‘
“
&
e
b
»~
ehat.
* N
A \
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Although there is some interdependence between the forward and backward
waves, the local quantities depend mostly on the random properties of
statistically independent regions of the scattering medium. Hence, the
hypothesis appears well justified, especially since the cross-correla-
tion terms are always neglected by comparison with direct-correlation

ternms.

Hypothesis 3. Although not essential, we make the paraxial

approximation. This considerably simplifies the mathematics and fol-
lows from our finding that the standard deviation of the random phase
front angle is not larger than ~0.06 for most practical applications.

Hypothesis 4. The particulate medium is statistically homoge-

neous and isotropic over a domain the size of the beam diameter. This
approximation is well justified for propagation of low-divergence laser

beams.

Hypothesis 5. The random phase front angle is statistically

homogeneous and isotropic in the plane transverse to the main direction
of propagation, the 0-z axis. This 1s consistent with Hypotheses 3 and
4 which guarantee that all the rays reaching a plane z traverse statis~
tically equivalent paths.

Hypothesig 6. The complex amplitude covariance function is

quasi-homogeneous and quasi-isotropic in the transverse plane. More

specifically, we assume that it is of the form
<a(z),1))a%(z,15)> = Flz),2,55(x +,)/2] « £z),255 1y-r,], [33]

where F and f are unspecified functions used to illustrate the
functional dependence only. This is a standard approximation made in
the presence of an average gradient. It {8 not essential but very

convenient.
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4.3 Constitutive Relations

From Hypotheses 3-5, eqs. 21 and 22 simplify to

a<vf>
R SIS Rl (4]
3V, >

b AR A AL s

where 21 denotes the two-dimensional gradient operator in the trans-
verse plane, i.e. with respect to the two-dimensional position wvector
r. Equations 34 and 35 show that the average phase front angle is
independent of the statistical properties of the medium. The solution
of eq. 34 for an initially spherical phase front with radius of curva-

ture (focal distance) F is given by

<!f> = r/(z-F). [36]
From eq. 27 and the assumption of statistical symmetry of the scat-
tering pattern with respect to the incident ray it follows that

<!b> - -<!f> - -E/(z—F). [37]

The first step toward the determination of the constitutive
relations 1s the solution for the random amplitudes ag and a. Solving
implicitly eqs. 25 and 26 with the respective boundary conditions
af(z-O) = 0 and ab(z-Z) = 0, we find

8 (z,p) = 35 exp - jwm-} f & if a% g (x,8)

ik F~z F-x 2 x
exp {Z(z-x) F-x : F-z L.~ % ' + g k<w>dz'}, [38]

~~~~~~~~
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YA Z
a,(z,r) = 3= exp -] kaiaz'} zf — if a2 g, (x,3)

. exp [ z=F I x-F

2 Z
- ]
l2(::--::) =F | z=¢ £~ 8| +’{ k<w>dz'}, [39]
where gf(x,g) and gb(x,g) stand for the right-hand sides of eqs. 25 and
26 respectively and where the solutions [36] and [37] have been substi-
tuted for <va> and <Y-b>' Equations 38 and 39 are implicit solutions
for the forward and backward random amplitudes since the functions 8¢
and 8y, contain a, and a,-.

The unknown higher order moments are <wa <afz

£70 Lgde™s 10 Y™
etc. The procedure to relate these moments to the lower order <A> and/
or <aa*> is basically the same for all of them. The implicit solution
for ac (or ab) is first multiplied by w, or Ve» OT v. Vs etCe.e, and
the products are then ensemble averaged. This produces many terms
under the integral operator of eq. 38 or 39. Most of them can be ne-
glected in relation to a leading term on account of Hypothesis 1, and
further mathematical simplifications can be worked out using Hypotheses
2-6. These derivation steps are lengthy and will not be repeated here;
however they are similar to those followed in Refs. 19 and 20. The

resulting constitutive closure relations are

k wa,> = -3 . <A, [40]
k <wa > = - % o Ay [41]
k <wa at> x - % Re [oafs] <aa%>, [42]
k <wva a%> = - % Re [0, ] <a at>, [43]
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e > 4
% @p Ly W =T O B (4]
L
"y 1k( 4, ~0,)
) <e 2y 'Y'.L . (\Lb - Zf)> = - g‘;qu>’ [46]
B
i 1k( 0= 0,)
AN £ .« (V= - v™ - <A >
e “ 2 Yy 0 (g 7G> =T Ay [47]
| 1k( ¢~ o)
d * . T - - o Co
ey © Ay Iy v (G- Y)>*ee
s::.: - -
f ; =2 Re[csb] a, ab*> -2 Re[osf] <a. ac*>, [48]
L4
::\. We af> =0, [49]
2
% 2> = 0 [s0]
-.; G app = - relpe) - Y wgap [51]
O
.fi-
g * -
N Wy 2poh> = - ReR ] . ¥ @pat, [52]
J
s where c.c. stands for the complex conjugate of the preceding term and
t%: where the quantities underlined by a double tilde are two-dimensional
X: tensors or dyadics.
5N
D) There are several constitutive relations but they can all be
e
4}: classified in one of three categories: the particle absorption terms,
o
i;t eqs. 40-43; the aerosol forward- and backscattering terms, eqs. 44-48;
1N and the diffusion terms, eqs. 49~52.
o
e
.;» The coefficients of eqs. 40~52 are given by the integral opera-
,%ﬁ tor 38 or 39 operating on various covarfance functions. To simplify
— the algebra, we restrict applications to slightly diverging beams. In

that case, the focal length F of eqs. 38 and 39 is large and negative.
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M Moreover, the covariance functions operated upon have longitudinal
,}-: correlation lengths that are generally much smaller than IF-zl and thus
_; the major contributions to the integrals come from values of x in the
f: immediate neighbourhood of z compared with |F-z|. Hence, we can make
- the approximation
2
o v
» -z
: = b [53]
and the following simplified operators Ot and 0 can be written from
. eqs. 38 and 39:
& z “A(z,n) = 1kp?
- ki (4 A
' o+{h(z,£;n.g)} == ‘;f '—2 e _,{I dzg e 2n h(z,r3m,p), [54]
Z~z -A (z,1m) = 1kp?
- ki dn (% ikp”
ozl =-3z [ e [f 4% e 720 h(z,xsn,p), [55]
o -
- where h(z,r;n,p) is a dummy function and where
g n
- Af(z,n) = fk<W(z-x')> dx’', [56]
o
. ‘ “
: 8(z,m) = [ kW(z-x')> dx'. [57]
; o
In terms of the operators 0+ and 0-, the particle absorption coeffi-
o cients are given by
o, .
. a . = 2kZ 0F {w(1)w(2)>}, [58]
: o, = 2kZ 0~ {<w(l)w(2)>}, [59]
b Ofg ™ 2k2 ot {Gf(z,n,g) <w(1l)w(2)>}, (60]
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pis: '
By Gpe = 22 07 {6, (z,m,p) w(1) w(2)>}, [61] ,1
o
}'::3 the scattering coefficients by
3 1
» P ] o+{gp Lo: gD ve(2)>}, [62]
..
2 - <l g .
x oy = =7 0T, Lt (1) (22}, [63]
L
f -l
: g ™ = 0'{H(z,n,2) v v : [<v (1) v (z)>
e + (D) (221} [64]
':"-:.
G = =3 Oz T T [Sgp(D) vy(2)
x::‘
- + < (1) v (2)>]}, [65]
' 9e ™ - 0‘{H(z.n.g) Cez,mp) ¥, T [«re(1) v (2)>
nes
e + < (D (2>} [66]
b1~
i
2 -
; oy = -3 Oz, mp) Gplz.mp) T Y, Tt [g(1) ye(2)>
o + @ (D g (22]} [67]
o)
Ve
1 and the diffusion coefficients by
e 1
i D =5 0% {6(zim ) <w (1) v (2>}, [68]
o 1 -
;‘“ D, =3 0" {6, (zimp «w, (1) v, (2)>}, [69]
e
ﬁg where (1) and (2) refer to the adjacent points (z.gl-g/Z) and (z-n,r-
L4
;E, p/2) of the covariance functions and where ]
N .
-" -, 4
2@;
5
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o Ge(z,mp) = <a (1) a, (2)> / <aga, >, [70] i
"oy . "
;: G (z,mp) = <a (1) a, (2)> / <apa, >, [71] o
) '.\v
0 1k [0, (1)=0,(2)=0,(1)+6.(2) ] >
* b f £ M
. H(z,n,p) = <e > [72] )
'e',fl(
oy t'.y;
_: The list of symbols at the beginning of this report defines the "
'. individual absorption, scattering and diffusion coefficients.
.QA v
o 4.4 Propagation Coefficients ,
‘ ;
: The absorption coefficients Ouf and % depend on the covariance ?;‘
B &
function <w(l) w(2)> which involves the real and imaginary parts of the 4

¥ ey
) random refractive index as defined by eqs. 10 and 12. <w(l) w(2)> can ;;“‘;
._ be determined from the specified medium and particle properties, i.e. ;tgf
! e
q the complex refractive indices of the medium and the particles, the E;:
v shape of the particles, their number density, and their size distribu- } |
:; ciin. Then, O and O CAN be calculated by direct substitution in
' eqs. 58 and 59. Because of Hypothesis 4, the covariance function <w(l) ‘z’
: w(2)> is independent of r over a domain the size of the beam diameter. ‘14
Hence, the coefficients O and o are functions of the longitudinal |

[} El.
:‘ coordinate z only. These coefficients are second-order corrections to ::
8-

u the absorption coefficient k<W> of eqs. 23-24 and 27-28. 5;,
i\ s
o 3
There are two additional absorption coefficients o and o | 4

afs abs o

X which depend on the amplitude correlation functioms Gf and Gb' The g:
latter functions are not known but their correlation lengths are ex- W

pected to be much greater than that of <w(l) w(2)> equal to the average
= particle size. Hence, both Gf and Gb may be replaced (in eqs. 60 and
67) by their values at the origin which, by definition, are equal to

: unity. Therefore, the coefficients dafs and %abs are respectively

W 5

..
oiTa¥
-

g

A

¥ equal to Oaf and Sap°

: "
p 2
N <)
X ?!"
12 g
A py
», :‘.1_
'} iy
§ ‘h K
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£0)

K The calculation of the scattering coefficients (eqs. 62-67) and .
L the diffusion coefficients (eqs. 68-69) requires knowledge of the phase 1

Ay front angle covariance functions. These cannot be inferred directly

P
L

e
o ik
P R

from the medium and particle properties but only through the solution
of the ray propagation equation. The procedure is to derive the equa-

8 tions for the covariances of v and from eqs. 5, 6, 21 and 22. The
;3£ result for slightly diverging beam waves and approximately Gaussian
135
;5h statistics for v, and v, 1
PAL £ ~b
: 22 32 1
N —_ - 2 -= .
: 222 YD) Y22 = 3o (D) v (2> - 7 T T [ (1) v, (2)>
"y
w (1) v(2)2]= - + ¥ ¥ <u(l) u(2)> [73]
{jﬁ ~f ~f 4 ~p ~ ’
Sl and a similar equation for <!b(1) !b(2)>. The source term <u(l) u(2)>
{fj{ on the right-hand side of eq. 73 can be determined from the properties
}n
‘35. of the particulate medium in the same fashion as for the function <w(l)
g w(2)> discussed earlier. Therefore, the solution for <v (1) .4(2)> can
:; in principle be worked out from eq. 73, and similarly for <v (1) (2)>.
ot
¥ The solution of eq. 73 cannot be treated exactly because of the
$e
) nonlinear term. No satisfactory method of solution has been derived
?,ﬁ yet. However, a preliminary analysis was carried out and order-—of-
:;ﬁ magnitude estimates were derived. Since the analysis is incomplete and
E"fJ may have to be reexamined, only the results will be presented here.
*:; First, the covariance function <v (1) (2)> gcales as
",
155
12
] :‘; <!‘f' !‘f> - O(<u2>i)o [74]
?:ﬂj For naturally occurring fogs, we obtain from eq. 74 that the standard 1
o, deviation of the forward phase front angle fluctuations is of the order :
oy :
- |
X
L i
. L
! "-‘::
-
-
N
;‘
X - \ \ e ‘\
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of 10 mrad, in qualitative agreement with observations. Second, the
longitudinal correlation length of <!f(1) zf(2)> is

L= 1 s . [75]
vx<b 2>

where v 18 the particles number density and =<b2> 1s the average parti-

cle cross section. Finally, the transverse correlation scale is

Sl T

by, [76]
which is generally much greater than the average particle radius <b>
characterizing the index covariance function <u(l) u(2)>. Therefore,
in addition to the nonlinearity, analysis of eq. 73 is further compli-
cated by the presence of the three disparate scales L, L, and <b>.
This is particularly troublesome in setting up finite difference meth-
ods of solution. The regults are similar for <zb(1) xb(2)>.

Because of the presence of the derf{vatives with respect to z in
eq. 73, the quantities <v_. xf>, L, and % are not truly local proper-
ties but they include some form of history of the medium through which
the wave has propagated. In particular, there exists a transition
region near the boundaries of the scattering medium. The size of the
dispersion domain varies with the local conditions and is of the order
of L x &.

For the backscattering coefficients, we need the functions <z;(1)
zf(2)> and <xb(1) zb(2)>. These are somewhat easier to determine
because they are not propagated. They define the backscattering prop-
erties at the location where the backscattering occurs. Since the
scatterers are statistically independent, the correlation does not
extend very far. Transversely, the functions <!;(1) !;(2)> and <!;(1)

!;(2)> correlate over a region of the same size as the particles, {.e.
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FIGURE 1 -~ Diagram of primary reflected and refracted optical rays in
the plane of incidence on a spherical particle of index n
surrounded by a medium of index 1.

L = <b>. [77]

The contributions measured at points more widely separated are uncorre-
lated because they originate from different and uncoupled particles.
Longitudinally, the average thickness of the scattering sheet over
which there is coherence is approximated by the mean distance between
the particles, i.e.

L= (). [78)

-o -> -o -
The variances <!f Ve and <!b zb> are inferred from the propa

gated <v_. zf> and <!b' v, > by applying the refraction-reflection

boundary conditions at the interface between the particles and the
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3
surrounding medium. Figure 1 illustrates the situation for the special "
case of spherical particles. There are two principal contributions 2
characterized by one external reflection and by one refraction followed -
by one internal reflection, respectively. The incidence and exit an~ .f
gles defined in Fig. 1 are related as follows il
wg
¢=26, [79] H
3
b
¢=206-21, [80] ?
i
where :
sin y = 2 sin 0 cos 6 [n? - 2 sin29] §
P
s
- sin © /2 - sin% [1 - 2 sin20], [81] >
n? P <
P A
»
and where np is the real part of the particle refractive index. The t;
- A
two main components of <!f. xf> (or <!b ~b>) for a single particle are X
proportional to the variances <02> and <¥2> calculated over the forward ii
scattering angle y. Since the scattering angle standard deviation is Y

small, we assume that y is distributed in such a way that the major

contributions to <¢2> and <¥2> come from small values of Y, which

]
allows the linearization of eq. 8l. Moreover, to model the average '
backscattering effects of the particles, we multiply <¢2> and <¥2> by ?3
the reflection coefficient and by the fractiomal cross—sectional area ii
of the particles over the scattering sheet of thickness L . We thus S?
obtain ;

2 R

- - n 2/3 j;
w_o.v> x <. v >—Pe 7 T2, [82] ,E'*
~ ~ ~ ~ 2 .
1 (n_+1) N

p Y

3

N

Ly

AR
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)

- - < 5 2/34)2> [83]
V.. V.2 x V.. V v ’

& My, (n_+1)2

z ,... p

15
4 - - nzz 23 2
- V,. vV, > x <v,. V,> v <b4> 84

)'t ~ ~b 1 ~b (n +1)2 4 [ ]

P

b
. 16n2(2-n )2 5,3 , (65 ]

N W, V,> = <y ..V, v <b%>, 85
~

G ~ ~b 2 ~b (n_+1)2
¥ P
) .

. Equations 77, 78 and 82-85 constitute an order-of-magnitude representa- :
. :
’{l{ tion of the covariance functions <v (1) (2)> and <v (1) (2)>. g

' {

. Some of the backscattering coefficients depend on the correla- 1

‘:'_~‘ tion function H(z.n,g) defined by eq. 72. Assuming Gaussian statistics {'

¢ ,

b3 for the random phase front fluctuations ¢f and ‘b’ which 1is a justified "

7::_1 standard approximation, we obtain from eq. 72 4
2, , 4

& 5 (2, +B,)

r:{ H(z, np) = e > [86] fé
‘ ‘«
£y
" where Pf and Pb are the forward and backward phase structure functions. I

45 For optical and infrared waves, the wave number k is very large and eq. :
‘-‘::: 86 can be satisfactorily approximated by the first term of the series 2
._ expansions of Pf and Pb for small separation distances. These can be %
' ¥

g derived from the solutions for <v 1) v ~f(2)>. We thus obtain the fol- 1
. lowing transverse and longitudinal correlation scales for H(ez,n, B)' ;
% ;
A% k

= Bet—,, [67] ;

J [v<aa>] *
€ R
I -r , [88] B
-, "1 [v<a?>] }

.('- [
,__ ]

& 1

o ;
- *

"-‘ h)
W j

.‘
’
%
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where A is the wavelength. The scales IF and L? are small but, for
most practical applications, they remain much greater than the respec-
tive scales £ and L of <!f(1) !{(2)> and <!b(1) !b(2)>' Therefore,

we may set

H(xsﬂnﬁ) =1 [89]

in eqs. 64-67 with negligible consequences for the accuracy of the back-

scattering coefficients.

The scattering and diffusion coefficients also depend on the

amplitude correlation functions Gf and Gb defined in eqs. 70 and 71.

Por the coefficients given by eqs. 60, 61, 66 and 67, the effects of Gf

and Gb are negligible since the scale <b> of the covariance function
<w(l) w(2)> and the scales 2 and L of <!f(1) !f(2)> and <zb(1) !b(2)>

are much smaller than the scales of either Gf and Gb' Consequently,

the integrals can be calculated with good accuracy by substituting for
Gf and Gb their values at the origin which, by definition, are equal to

unity. However, in eqs. 68 and 69, the scales of G, and G, are compara-

ble to those of the phase front covariance function:. But? even in
these cases, the major contributions to the integrals come from the
neighbourhood of the origin in the (n,p)-space because of the effect of
the rapidly oscillating term-% exp il-i‘-ﬁ-]. Nevertheless, the complete
£ and 2b requires the
solution of Gf and Gb' Equations for Gf and Gb could be derived from
the stochastic eqs. 5-8 but this would produce multidimensional differ-

ential equations and more unknown moments for which additional constitu-

formal treatment of the diffusion coefficlents 2

tive relstions would have to be established. Instead, it is hoped that
the following solutions, derived by neglecting diffraction, are suffi-
ciently accurate to account for Gf and G, in the region adjacent to the

b
origin:
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1 z+n/2 z+n/2
Gf(z,n,g) = exp {- 5 gdz'idz" ;}:o Zp !p: <!f(z',£fg/2) !f(z",£72/2)>

1 z-p/Z z-p/Z . .
3 Jaz' Jaz" Um L, L <vg(z',o¥p/2) v (2",r-p/2)>
o o E, 0

1 z+n/2 z-1/2
- g Jaz' [az" 1lim T, Tt <xele'oore/2) v (="rmg/2)>
o o 2 +0

z-n/2 z+n/2
fdz' [dz" lim V_V : <!f(z',£fg/2) !f(z",£72/2)>
o o g *o

oof =

z z
+% fdz' [dz* 1im T, Lyi <gelz',rte/2) ve(z",rp/2)>}, [90]
o o B *0

and a similar equation for Gb(z,n,g). This will have to be verified
experimentally but the errors are expected to be small since the prin-
cipal contribution to the integrals of eqs. 68 and 69 which come from
the neighbourhood of the origin are independent of the approximation.
The alternative is a much higher level of mathematical complexity or

the need for some empirical input.

Equations 62-69 and 89-90 give the propagation coefficients in
terms of the forward and backward phase front covariance functions.
These functions satisfy nonlinear partial differential equations which
were not solved in this report. The principal difficulties are the
nonlinearity of the equations and the presence of three disparate
scales: the average particle size, the mean distance between wave
interactions with the particles, and the latter multiplied by the
forward scattering phase front angle standard deviation. What was
achieved in this report is the deteraination of these scales and the

derivation of order-of-magnitude estimates of the pertinent variances.

---------
‘‘‘‘‘‘‘
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‘1 Consequently, the present state of the model allows only rough esti- ‘-"
L mates for the propagation coefficients. i
o Although a satisfactory solution of the nonlinear eq. 73 has yet 3-
L to be derived, eqs. 58-69 together with eq. 73 for the phase front ‘
‘: angle covariance function provide a formal framework for relating the
J propagation coefficients to the medium properties. Moreover, if eq. 90 '
. holds, this problem is totally uncoupled from the propagation problem :"
X since the wave amplitude is not in eqs. 58-69. Therefore, the deterai- e
;-1’1 nation of the scattering and diffusion coefficients is a well-posed :
:f problem, albeit difficult, that can be handled independently of propa~ 3
! gation. The situation is somewhat similar to the more common approach
. vhere Mie calculations, needed to specify the phase function, are 5“'
: performed independently of the solution of the radiative transfer
: equation.
’ Equations 58-69 are valid for inhomogeneous media, the only
- restriction being that the size of the inhomogeneities must be larger ‘.‘
R than the beam diameter. It must also be noted that the various scat- -
w' tering and diffusion coefficlents are not truly local values. They :',
bear some history of the scattering medium over a region defined by the ol
= convolution of the coherence domain of the phase front angle covariance 5
3 functions with the integral operators Ot and 0~. t:"
:
' The physical interpretations are straightforward. The scat-
{' tering coefficients are responsible for the transfer of energy from the {
e coherent state into the incoherent ox scattered state, and from the ,:
: forward propagating beam into the backward propagating beam and vice E:l
- versa. The diffusion coefficients measure the rate at which the scat-
: tered energy is spatially diffused, or the rate at which the scattered [
j:; beam spreads out. They account for the multiple scatterings. 3
g i
s The diffusion coefficients are dyadics or second-order tensors ‘
- but all the components are not independent. PFrom Hypothesis S, the ‘
:
2 3
A o

A

u-}-.
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phase front angle covariance functions are statistically homogeneous

and isotropic in the plane normal to the propagation axis. The general

form for such an isotropic tensor is (Ref. 21)
<w(1)¥(2)> = M(z,7,0%) pp + N(z,n,pD) §, [91]
where § is the two-dimensional unit dyad or the two-dimensional

Kronecker delta and M and N are scalar functions. The diffusion coef-

ficients are thus given by an expression of the form

2
-d f %!1 e-Af(z'n)-j d2p e&%_[l((z,n,pz)gg + N(z,n,p0?) §]
. - 1kp?
- -zﬁg %l e-Af(z’“)g odp e 2" [M(z,n,p20+2N(z,m, 0D ] & [92]
or in shorter motation by
D = DB, [93]

where D is a scalar function of position z along the direction of

propagation.

The mathematical difficulty of solving exactly for the scat-
tering and diffusion coefficients will be dealt with in a subsequent
work. In this report, we will proceed with the solution of the propa-
gation equations. Comparison with experimental data or empirical
modeling can always be used to determine the coefficients.
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3! -l
; 5.0 PROPAGATION EQUATIONS ¢
3 -
. The governing propagation equations are obtained by substituting _‘
) the constitutive relations, eqs. 40-52, for the higher order unknown ;
. moments in eqs. 23, 24, 27 and 28. We limit the present analysis to o
. the more practical case where there is only one coherent beam transmit- %
:ij ted in what is chosen as the forward direction. Under this condition “
j:ﬁ <Ab> = 0. Moreover, we assume that the aerosol diffusion effect is
j much more important than the diffraction spreading of the beam, which S 4
¥ is well justified in most applications. We can thus neglect the terms }
:\ of the form %E v, - [<a*zla> - <a!la*>]. With these approximations and ;_

Al
r
= Te e

using eqs. 36 and 37, we obtain the following set of propagation

¥

equations:

: |
S .
- a) for the average reduced amplitude A= <A N
T A A A )
~ r r r r 1 - - -1 o2, .
i oz + z=F ar + z-F + 2 [oa af + Ocf + acf]Ar 2k v.LAt 0, [94]
.;::’ o4
;:j: b) for the forward-scattered irradiance It = <afa f*>: :.\-
) ;}
e art, r ort , 2r* _ )
0z + z-F or + =—F T [aa Re(oafs) + Re(osf)]l'" Re(Df)VlI"' "
-:';‘ \-
»
- * - )
% Re(o . + o o) A A* + Re(d™ )17, [95] R
N
:: ~'!
§ c) for the backscattered irradiance I~ = <abab*> %
r:
%z ~ z-F or  z-F | [da Re(0ypg) + Re(07yp 27" ~ Re(D)V]T o
" - * + =
Re( dc-:f) ArAr + Re(d;f)I ’ [96] ;
)§ "
i where S, is the main contribution to the particle absorption coeffi- b
o, cient defined by :
;
£ o
'..- '..
’n [N
5 R
-, o




‘ v vy
a B AN
. ety )
y o B R
P A LA

L}

L.

RO
5
1

Ty
¢ » .
R A B s, .,
’ .. . '. et .. . L 2N A A
. et et et EAIPRaN

Y YV Y Vv W

A

» LI » B .
@
@

-
. 'z I.X
LR

v
L}

UNCLASSIFIED
30

o, = 2k<W>. [97]

Equations 94-96 constitute the proposed propagation model. They
form a closed set of three-—dimensional, coupled, partial differential
equations for the solution of the forward- and backscattered irradiance
beam profiles resulting from a coherent optical or infrared beam di-
rected into a particulate medium. The dimensions are reduced to two

under cylindrical symmetry.

The various absorption, scattering and diffusion coefficients
are formally related to the medium properties through eqs. 58-69.
Homogeneity 1is assumed only on the scale of the beam diameter. The
model handles all orders of scattering in a global fashion but cannot
differentiate between them. However, the single-scattering results can
be derived by dropping eqs. 95 and 96 and solving eq. 94. Similarly,
the first—-order multiple-scattering approximation for the backscattered
beam can be modeled by setting I* = O in the right-hand side of eq. 96,
and by arbitrarily adding the forward-scattering coefficient Re(acf) to
[dé - Re(osbs) + Re(o;b)] in the left-hand side of the same equation to

account for the single-scattering losses.

It is emphasized that the model predicts the irradiance and not
the radiant intensity. Experimentally, this means that (ArA; + Tt) and

I” must be measured with wide field of view detectors.
6.0 BEAM WAVES

We consider the problem of an initially Gaussian beam 1lluminat-
ing a particulate medium. The propagation coefficients are either
specified directly or have been derived from eqs. 58-69. Then the
propagation eqs. 94-96 must be solved. The principal difficulty
resides in the coupling between the forward—- and the backscattered

irradiance. 1In the present application, the coupling is treated
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iteratively, first by setting I” = 0 in eq. 95 and solving for It and
I in sequence, and then by substituting the I~ solution back into eq.
95 and repeating the process. Under these conditions, the equations

» can be solved analytically.

- e e s e e .
RN U I 4y
tod DML s

I

To reduce the number of parameters, we assume a collimated beam,

N i.e. F+», and we make the following simplifications -
\ '..‘
%f * %b ~ %fs ~ %abs’ [98] =
e
%Gt = %b = % ¥ b [99]
which, from the defining eqs. 58-67, are expected to hold for particles 8
: larger than the wavelength. Furthermore, we define the nondimensional -
- independent variables (j
P z g}
n = [ o.(z")dz', (100] N
. o e
: pErlv, [101]
where
- o, = Re [oa “otot o, 1 [102] \
and where w, is the initial beam radius at l/e in irradiance. The k.
nondimensional propagation equations thus become Z:f
i . , -
; Tt (LH10 A - 1AV2A =0, [103]
- art _ 2 - * -
an+aI+ |<pr1+ BAA+ I, [104]
L] -
] Sl
- _-:‘;
; =N
<4 n":
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A
s
‘ ) O -_ 2 - o x
ot el — g T = tAA+ I+, [105]
.'Jl‘
L
[ The similarity parameters are 3
% 3
Im [oa- Oaf + Ocf + d<-:f] ¥
g x= S , [106]
- [
o A=1/(2 w2 o,), [107] %
‘ 1
o Re[aa- O at d;f]
e a= g ’ [108] :
"o t }
v %
. ¥
- Re[o + o _] 1
3 e o it
- p= —2L <t | [109]
e X :§
s, 3,
1y _
" = Re_[as_b_] [110] s
o ’ 1
- t g
i, ,
§=. 3
< Re[Df] :
'._“:. Kf- 2 ’ [111] '-.
< oW /
t o ,
“_'} Re[Db] N
'
,., = —— - [112] f
- 2 ¢
v %Yo ;
'. »‘
{ i
For the calculation results presented here, we have taken %, a, 3
::: B and t to be constant throughout the medium. This constitutes a rea- ;"
ﬁ:fj: sonable approximation if only the particle number density is allowed to .:\
. change with little variations in the nature of the particles and their -
< size distribution. The parameter A varies with o, but it is generally
,",,,-'

too small to make appreciable differences in the solutions and it was

Y

NS

assumed constant. Moreover, the coefficients Ke and <y increase from

zero to asymptotic values in their respective transition regions near

i -t
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/ Ai-r
4 b
X the medium boundaries. However, since the scattered irradiance is i
s small in the transition regions, we have approximated DYy
3 ° d
3 oS
: =K= 3] L
: Ke = Kp = K cst [11 nt
everywhere with little effect on the resulting solutions. - %
L} .$
g%t

The solutions were calculated for the boundary conditions t*.-»

.l

A_(o,p) = exp (-p?), [114]

A%

i f_')-
] 1+(o,p) = O, [115] h)
v haxy
37 .
| ]

; I7(g,p) = O, [116] t
i i
h * .
) where { 1s the optical depth of the cloud, 1.e. :3'
s

! Tt
z

. g= /o (2')dz'. [117]
: o :’%
N\

The solutions were calculated analytically and only the first iteration {3
was worked out. The results are presented in Figs. 2-5 for the .

‘ following set of parameters: p = 0, A= 4.7 x 10~°, @ = ¢ = 0.03, B = “
1 i
\ 0.97 and x = 65. These are the estimated similarity parameters for a t:f- )
: 1.06~m, O.15-m-diameter laser beam propagating in an advective fog of I"
t masgs loading equal to 0.5 3(1{20)/1113 with a modal particle radius of
\ 5um. The water droplets were assumed to be nonabsorbing. '§
A%y

-

The transmitted beam irradiance profile, i.e. (ArA:‘ + 1%, at N

{ n=0,2,4,6 and 8 optical depths are plotted in Fig. 2. The irradiance k;‘
. is normalized to unity on the propagation axis (p = 0) at the transmit- _;{
ter (n= 0). The results show that the basic Gaussian shape of the 51'3

P.h"

i beam 1s not appreciably broadened up to optical depths as large as 6. \-::
. [ |
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Whereas the effects of multiple scattering were unimportant for
on—-axis measurements of the transmitted beam, Fig. 4 shows that they
are significant for the analysis of the detected backscatter. This is
even more dramatic if we consider the lidar signal, i.e. the range-
gated backscatter signal, as illustrated in Fig. 5. At optical depth
3, the difference between the full multiple scattering and the first-
order multiple-scattering predictions has already reached a multiplica-
tive factor of 10 and it continues to grow with increasing optical
depth. These results have great implications in the interpretation of
lidar measurements. Careful comparison with well-documented data 1is
still needed but Figs. 4 and 5 indicate that the effect of multiple
scattering is potentially very important.

The calculation results depicted in Figs. 2-4 agree well with
various known effects of the multiple-scattering phenomenon, in parti-
cular its greater influence on the backscatter than on the transmission
measurements. These solutions were derived analytically with the help
of a number of simplifying approximations stated at the beginning of
this chapter. For more general applications, the propagation eqs.
103-105 can be solved numerically with no restrictions on the absorp-
tion, scattering and diffusion coefficients other than the hypothesis
of homogeneity over a scale of the order of the beam diameter. The

equations present no particular difficulties for a numerical solution.
7.0 PLANE WAVES

It is instructive to consider the special geometry of plane or
spherical waves. This simplification allows complete solutions to be
derived in closed analytic form. These analytic expressions are very
useful for parametric studies. Moreover, the planar or spherical geom-
etry represents adequately many physical situations, e.g. the planetary
atmospheres, the clouds and the ocean waters illuminated by the sun.
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The same simplifying approximations as in the preceding section
are made. The nondimensional propagation eqs. 112-114 are adapted to
planar geometry by simply neglecting the transverse gradients. We thus
obtain

dA_A*

d; =+ A A* =0, [118]

art -
r i IH=8 AAt + 1T, [119]

dr TOT = TAAL+ TN [120]
Equations 118-120 form a closed set of three simultaneous, coupled
ordinary differential equations. The boundary conditions are

A A% (0) = 1, [121]
It (0) = 0, [122]
1" (Q) =0, [123]

where { is the optical thickness of the plane-parallel scattering

medium.

The set of eqs. 118-120 {s identical to the four-flux theory
described in Chapt. 10 of Ref. 1 where AiA; is the forward collimated
flux and I* and I", the forward- and backward-diffused fluxes respec-
tively. We have simplified the problem by assuming no backward-
collimated flux and making such approximations as defined by eqs. 98
and 99. These make the aslgebra easier but they are not fundamental to
the model. Therefore, the four-flux theory is the plane-wave asymp-
totic form of the propagation model proposed in this report. However,
contrary to the four-flux theory, which is constructed heuristically
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Y
i
0
‘\_ with propagation coefficients not clearly related to the physical pa- ;
o rameters of the particulate medium, our model is derived from Maxwell's A
¢ >
EL equations and the coefficients are formally related to the medium W
z: properties. , %
’ Ly
A The propagation eqs. 118-120 with the boundary conditions 121- y
,% 123 are straightforward to solve. The similarity parameters are the gg
9 albedo £
Re[o . + o] 3
: - cf cf 5
} Q °; ’ [124] ; :
A LY
“ 3
KN and the ratio of the backscattering to the total scattering ii
- coefficients e
A &
f N
2
A 5
‘« = Ekri,—:f]_.J . [125] ::
Tt %t v
N 3
‘: With the further approximation Ouf << ¢ which is almost always sat- }‘
d \
o isfied in practical cases, the results are: gi
) X
e a) for the total irradiance transmitted through a cloud of %
;é optical thickness { ;@
L:w L‘
Id 3
-eC 2
( A AR + THE) = —2E8 5oF - [126] 14
" (5+e) ~ (b-€)e" X

and b) for the integrated backscattered irradiance from a cloud of
7;' thickness {

K ﬂ

m [1 - e.ZeC

X (0,0 = ' [127] "
? (6+e) - (b-¢) e~2CC *
] "
“' «
' X
T
t'_J

%

5

£ .
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iad . I
“ﬁ( where .
i 8= (1-9) + D, [128]
" e (1-9) [(1-9) + 2m2). [129]

The corresponding single—scattering (SSCT) and first-order multiple-
scattering (FOMS) solutions are

o 1 g a3 £

-

e ® =

s (A A0 yger= e s [130]

ll:;

B -2c]

ho - 1 -

2 [17€0, 8 Jpouss = % =), : [131]

'“;':- For spherical waves, we find exactly the same expressions except ,
‘4_'.:? for the multiplicative geometric factors Rzz and kzl on the left-hand :
: side of eqs. 126(130) and 127(131) respectively. R; and R, are the

V radial positions of the centered front and back spherical boundaries of

f‘ 3 the scattering medium.

s
a' The transmitted irradiance solutions are plotted in Fig. 6 4

versus the cloud optical thickness {, for I = 0.04 and various values

of the albedo Q. The decay rate with respect to { varies inversely ;
with Q but, in all cases, it remains smaller than for the single- ;
scattering solution (SSCT). The latter is reached in the limit Q+0,

i.e. vhen the absorption becomes dominant over the scattering.

The integrated backscatter results are displayed in Fig. 7. All
the curves saturate to some asymptotic level but the required cloud
thickness and the saturation level increase with Q. If there is no
absorption (Q = 1), the transmitted irradiance is eventually all
% reflected back for optical thicknesses much greater than 1/II. In the
)

o Ay W
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first-order multiple-scattering limit, the backscattered irradiance
saturates quickly for { > 2 and at a level equal to MQ/2 which repre-

L)
g‘ sents only a small fraction of the transmitted signal.

t Figures 6 and 7 show large differences between the plane-wave
multiple- and single-scattering solutions. This is in agreement with
the fundamental differences between the two approaches. 1In single

) scattering, the scattered energy is assumed lost whereas it is simply
; redistributed spatially in multiple scattering. Because of the plane-
parallel geometry, the losses at one point due to spatial redistribu-
tion are compensated for by gains from the adjacent regions. Hence,

. the multiple-scattering solutions should indeed predict higher trans-

mitted and backscattered irradiance levels, as illustrated by our

g results in Figs. 6 and 7. Moreover, it is well understood that the
¥ single-scattering solution should become more accurate as the effect of
)

absorption increases since the absorption represents a true energy loss
to propagation. This is also well verified by the predictions of our

model.

An interesting physical situation is the no-absorption limit,
i.e. @»1. In this case, §+II, ¢%0, and the transmitted and integrated

. backscattered irradiances become respectively

‘ 1
; AAKD) + THE) = 1o [132]
{

. 17(0,¢) = 1+ ¢ [133]

Y Bucher (Ref. 16) has shown that Monte Carlo simulations fit very well
the expression

ol an ol o
Pl
v

Pl
-’
Tt s L I

¥

¢ 1.69 o

§ - W

; IO = T35 (1-<c0s)C * (134] ¥

[ AT

: :ﬁt
Y

g g

e g

‘s Iy
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aay
e
for (1-<cos9>)C > 1, where I_ = A A* + I* and where <os 0> is the
-« average cosine of the scattering angle over the complete forward and
ﬁf backward directions relative to the incident axis. It is not clear how
EZ (1-<cos ©>) relates exactly to our parameter II, but they both vary in
”T the same direction with the ratio of the backscattering to the forward-
:*g scattering coefficients and they are both of the same order of magni-
}:3 tude, i.e. a few percent. Therefore, eqs. 132 and 134 show that our
~2
‘:{ analytic solution is in good qualitative agreement with Monte Carlo
By
' data. This functional relationship was also verified in a laboratory
S experiment (Ref. 23).
xd
e
) 8.0 CONCLUSION
We have derived from Maxwell's equations a propagation model for
optical and infrared waves in particulate media. It has the form of
simultaneous three-dimensional partial differential equations for the
average amplitude and the average scattered irradfance of the forward-
- and backward-propagating waves. These equations involve absorption,
j}: scattering and diffusion coefficients that are formally related to the
'i:' statistical properties of the particles and the surrounding medium.
2;. The model handles beams, includes all orders of scattering, and is
A applicable to inhomogeneous media provided the inhomogeneity scale is
‘if not smaller than the beam diameter. The main restriction is that the
ﬁkz fraction of volume occupied by the particles to the }th power must be
ru much smaller than unity, which is well verified in atmospheric applica-
. tions. The polarization effects are neglected in the present version.
\.:'.
\._-
:f- The propagation equations are linear and simple to solve, at
~ e
ii' least numerically. The coefficients are related to the medium proper-
')j ties through nonlinear equations which are difficult to deal with. In
'3:‘ this report, only order—of-magnitude estimates of these coefficients
b
ey
€ 4
)
i
o
a3
o

?Qﬁ“jgf -
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were obtained. The important observations, however, are that the rela-
tions do exist and that they are not coupled to the propagation prob—
lem. Thus, the coefficients can be solved independently or inferred
by some other means such as experimental measurements or empirical

modeling.

The solutions derived in this report are in good agreement with
the present understanding of the multiple-scattering phenomenon.
Closed form expressions were obtained that are useful for analytical
purposes. In particular, the model provides a convenient theoretical
tool for the analysis of the multiple-scattering effect on the inver-
sion of the lidar data. This will constitute the subject of a future

reporte.
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